
IoTNetEMU - A framework to emulate and test IoT applications
João Oliveira

joao.oliveira@fraunhofer.pt
Fraunhofer Portugal AICOS

Porto, Portugal

Filipe Sousa
filipe.sousa@fraunhofer.pt
Fraunhofer Portugal AICOS

Porto, Portugal

Luís Almeida
lda@fe.up.pt

CISTER / FEUP - University of Porto
Porto, Portugal

ABSTRACT
Testing and validating IoT applications is inherently complex due
to the number of devices involved that should communicate with
each other and with cloud infrastructures. Models, emulators and
testbeds are used to validate parts of the solution, but the gap be-
tween simulations and live experiences is still deep. To minimize
this gap, we propose IoTNetEMU, a modular framework that com-
bines several open-source components to provide a validation tool
for developers and researchers. This demonstration shows how to
test and validate an IoT application with minimal changes using
the framework.

1 INTRODUCTION
The Internet of Things (IoT) is a current paradigm where several
interconnected devices are used to collect and process data from
our environment and actuate in many use cases of our daily lives.
The vision is for these devices to become ubiquitous and scale
to massive numbers, supported by smart edge devices and cloud
infrastructures. However, the inherent complexities and challenges
of testing this type of applications pose significant hurdles for
developers and researchers.

Some solutions are proposed in the literature to tame this com-
plexity. One approach is to model nodes and applications to validate
algorithms or policies. The CloudSim framework [5] is one solu-
tion that focuses on modelling Cloud deployments. Several related
works were proposed focusing on specific applications such as
iFogSim [6], which focuses on Fog scenarios, or EdgeCloudSim [8],
which targets Edge-based scenarios. Nevertheless, these solutions
are limited for validating IoT applications since not all components
run actual code. Other solutions follow the emulation approach to
reduce the gap to real deployments. One such solution is the Cooja
Network Simulator [1], a tool for Contiki-based applications. This
tool allows developers to run Contiki code in motes connected to a
simulated network. Even though this solution is much closer to a
real scenario it is still limited since it only supports the Contiki OS.
Renode [3] is another proposal that allows developers to run ac-
tual code in an emulated device regardless of the operating system.
However, it requires that the hardware models of the desired target
are implemented and supported. Furthermore, the network model
is limited, reducing the applications that can be used. Another ap-
proach is to use testbeds with real devices to validate the developed
application. Since deploying a significant number of devices might
not be feasible, a community testbed such as Fit IoT-Lab [4] can be
used. Nonetheless, using a remote testbed is not always practical
since it might not be available when required.

Even though several approaches are proposed, one is lacking that
allows developers to emulate a significant number of nodes running
real code that can then interconnect with application services in a
controllable network.

In this demonstration, we present the IoTNetEMU framework
and how it can be used to test and validate generic IoT scenar-
ios involving constrained nodes and containerized applications. It
combines previous approaches, such as emulation and network
simulation, to reduce the difference between testing applications
using modelling or testbeds with real devices. The rest of this paper
describes the framework and how it can be used to validate a simple
IoT application.

2 IoTNetEMU DESCRIPTION
IoTNetEMU is a Python framework that integrates several open-
source emulation and simulation tools to create a more realistic
testing and development scenario for IoT applications. It allows
developers to easily validate and test an application using simple
configurations and actual code with minimal adaptations.

The framework divides the entities of an IoT application into
three main abstract components:

• Node: defines IoT nodes that connect to Networks and
communicate with Applications. Such Nodes are end-nodes,
edge devices or even gateways and are used to emulate a
complete device running real code.

• Application: define IoT applications deployed in a gateway
or cloud server. This component emulates containerized
software components independent of the underlying hard-
ware.

• Network: represents the networks that connect Nodes to
Nodes, Nodes to Applications or Applications to Applica-
tions. Multiple Networks can exist in an IoT application
scenario.

Currently, IoTNetEMU features at least one implementation for
each component. Since our focus is on networks of constrained
devices, the current Node implementation uses QEMU [2] to em-
ulate a microcontroller (Cortex-M3) running a Zephyr applica-
tion. We leverage QEMU’s virtual network interface and Zephyr’s
mps2_an385 board definition to use a TAP to connect the emulated
device to the Network components and provide connectivity to the
firmware. The current Application implementation is focused on
running software components on Docker containers. It creates a
network for the applications using a dedicated bridge and controls
the container lifecycle. A TAP interface is attached to the bridge
that is then used to connect the containers to the Network compo-
nents. The basic Network implementation simply connects all TAP
interfaces from the Nodes to the bridge of the Docker containers
and sets static IPs according to the configuration. Naturally, this al-
lows all Nodes to communicate with the Applications and between
themselves but it is limited since it cannot be used to emulate real-
istic network scenarios. The second implementation integrates the
ns-3 network simulator [7]. It uses the TapBridge model to connect
the Nodes and Applications to the ns-3 simulation and allows the

©João Oliveira, Filipe Sousa, and Luís Almeida, 2023. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive version was published in Q2SWinet ’23: Proceedings of the 19th ACM International
Symposium on QoS and Security for Wireless and Mobile Networks, https://doi.org/10.1145/3616391.3622774.

João Oliveira, Filipe Sousa, and Luís Almeida

definition of custom network topologies using the ns-3 wired and
wireless models.

The IoTNetEMU architecture and components allow users to
emulate devices running actual code with minor modifications and
connect it to containerized applications through a fully controllable
network to test and validate the envisioned application. This eases
the validation effort of such solutions and reduces the gap between
simulations and live experiences. Although the current number of
implementations is not extensive, the modular architecture enables
the integration of other tools to expand its capabilities further, if
needed.

3 TESTING AN IoT APPLICATION
For this demonstration, we detail the steps to test and validate
a simple application where multiple nodes communicate with an
LwM2M server running in a cloud.We use the lwm2m_client sample
application available in Zephyr and the Leshan LwM2M Server.
nodes:

node1:
type: 'zephyr '
image: '/workspaces/zephyr/samples/net/lwm2m_client '
params:

- '-DCONFIG_BOOTSTRAP_ID =\" node1\"'
- '-DCONFIG_NET_CONFIG_PEER_IPV4_ADDR =\"10.10.10.253\" '
- '-DCONFIG_LWM2M_PEER_PORT =5685 '

networks:
ns3:

ipv4_address: 10.10.10.1
ipv4_gateway: 10.10.10.254

node2:
type: 'zephyr '
image: '/workspaces/zephyr/samples/net/lwm2m_client '
params:

- '-DCONFIG_BOOTSTRAP_ID =\" node2\"'
- '-DCONFIG_NET_CONFIG_PEER_IPV4_ADDR =\"10.10.10.253\" '
- '-DCONFIG_LWM2M_PEER_PORT =5685 '

networks:
ns3:

ipv4_address: 10.10.10.2
ipv4_gateway: 10.10.10.254

node3:
(...)

node4:
(...)

node5:
(...)

applications:
leshanserver:

type: 'docker '
image: 'iotnetemu/leshan -server :1.0.0 '
networks:

ns3:
ipv4_address: 10.10.10.252
ipv4_gateway: 10.10.10.254

leshanbsserver:
type: 'docker '
image: 'iotnetemu/leshan -bs-server :1.0.0 '
networks:

ns3:
ipv4_address: 10.10.10.253
ipv4_gateway: 10.10.10.254

networks:
ns3:

type: 'ns3 '
script: 'ns3_topology.py'

Listing 1: Configuration file for the demonstration scenario.

In the first phase, we perform the needed modifications to the
Node and Application code. We modify the Zephyr sample by

adding an overlay to support the QEMU network interface and
a configurable LwM2M bootstrap ID through a Kconfig file. Af-
terwards, we create two container images containing the Leshan
bootstrap and LwM2M servers.

The second phase focuses on creating the testing scenario. Each
scenario is stored in a workspace that is nothing more than a folder
that contains all the needed files. One such file is the configuration
file that defines the Nodes, Applications and Networks and how
they interact. The configuration file for this demonstration can be
observed in Listing 1.

This file defines several zephyr nodes with the path for the
Zephyr application and the parameters for its compilation. Fur-
thermore, it defines two docker applications with the images to be
used by the containers. Finally, a ns3 type network is defined, and
each Node and Application set its network configurations (e.g. the
IP address) using a YAML key matching the corresponding Net-
work. Additionally, the ns3 node defines the path to a script that
defines the network topology for the simulation. Such script can
be observed in Listing 2.

from ns import ns

def setup_network_topology(nodes , applications):
Create nodes
node_container = ns.network.NodeContainer ()
node_container.Create(len(nodes) + len(applications))

Create a CSMA network between nodes and applications
csma = ns.csma.CsmaHelper ()
netdevice_container = csma.Install(node_container)

Add ns -3 devices to IotNetEmu objects. They will be connected
to the TapBridge automatically.

for i, node_name in enumerate(nodes):
nodes[node_name]['ns3_node '] = node_container.Get(i)
nodes[node_name]['ns3_device '] = netdevice_container.Get(i)

for i, application_name in enumerate(applications):
applications[application_name]['ns3_node '] =
node_container.Get(i + len(nodes))

applications[application_name]['ns3_device '] =
netdevice_container.Get(i + len(nodes))

Listing 2: ns-3 network topology script.

For the sake of simplicity for this demonstration, the topology
script connects every device using a CSMA network. Thus this is
not a limitation since we can use ns-3 models to simulate diverse
wireless links.

The final phase is to run IoTNetEMUwith the scenarioworkspace
folder. The tool starts by loading the configuration file and creating
all the defined components. Then, the Zephyr application is built
for each node, the application images are pulled, the containers
are created, and the ns-3 simulation is set up using the network
topology script. Finally, a QEMU instance is launched per node, the
containers are started, and the ns-3 simulation is launched. The
architecture of this application can be observed in Figure 1.

Visiting the Leshan LwM2M web interface, we can verify that
the application works correctly (Figure 2) and the nodes can com-
municate with the server.

The host can communicate with each application components
using their IP address, as shown in Figure 3. Additionally, the tool
creates a host-accessible serial port for each node, allowing the user
to interact with the emulated device directly.

Finally, to collect data, users can use Wireshark or similar tools
to capture data on the network interfaces created by IoTNetEMU or

©João Oliveira, Filipe Sousa, and Luís Almeida, 2023. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive version was published in Q2SWinet ’23: Proceedings of the 19th ACM International
Symposium on QoS and Security for Wireless and Mobile Networks, https://doi.org/10.1145/3616391.3622774.

IoTNetEMU - A framework to emulate and test IoT applications

Figure 1: High-level architecture diagram of the demonstration.

Figure 2: Containerized Leshan LwM2Mserverwith emulated
nodes.

Figure 3: Ping result for nodes 1 to 3.

use any of the tracing mechanisms available in ns-3. Figure 4 shows
Wireshark capturing LwM2Mmessages from one of the application
nodes.

This simple demonstration shows that IoTNetEMU can be used
to test and validate IoT applications with minor changes to real
code. It provides a framework for reproducible testing scenarios
and eases some of the challenges associated with the developement
of heterogeneous IoT applications.

Figure 4: Wireshark capture of node 5 response to the server
read request of resource /3/0/0.

ACKNOWLEDGMENTS
This work is co-financed by Component 5 - Capitalization and
Business Innovation, integrated in the Resilience Dimension of the
Recovery and Resilience Plan within the scope of the Recovery and
Resilience Mechanism (MRR) of the European Union (EU), framed
in the Next Generation EU, for the period 2021 - 2026, within project
Microeletrónica, with reference 19.

Also supported by the “MLSysOps Project” (Grant Agreement
101092912), funded by the European Community’s Horizon Europe
Programme and by the Research Centre in Real-Time and Embedded
Computing Systems – CISTER, funded by national funds through
the FCT/MCTES (PIDDAC): Base Funding - UIDB/04234/2020.

REFERENCES
[1] 2023. An Introduction to Cooja. Retrieved Jul 12, 2022 from https://github.com/

contiki-os/contiki/wiki/An-Introduction-to-Cooja
[2] 2023. QEMU - A generic and open-source machine emulator and virtualizer. Re-

trieved Jul 12, 2022 from https://www.qemu.org/
[3] 2023. Renode. Retrieved Jul 12, 2022 from https://renode.io/
[4] Cédric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,

Thomas Noel, Roger Pissard-Gibollet, Frédéric Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, and Thomas Watteyne. 2015. FIT IoT-LAB: A Large Scale Open

©João Oliveira, Filipe Sousa, and Luís Almeida, 2023. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive version was published in Q2SWinet ’23: Proceedings of the 19th ACM International
Symposium on QoS and Security for Wireless and Mobile Networks, https://doi.org/10.1145/3616391.3622774.

https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://www.qemu.org/
https://renode.io/

João Oliveira, Filipe Sousa, and Luís Almeida

Experimental IoT Testbed. Milan, Italy. https://hal.inria.fr/hal-01213938
[5] Tarun Goyal, Ajit Singh, and Aakanksha Agrawal. 2012. Cloudsim: simulator

for cloud computing infrastructure and modeling. Internation Conference on
modelling optimization and computing 38 (2012), 3566–3572. https://doi.org/10.
1016/j.proeng.2012.06.412

[6] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya.
2016. iFogSim: A Toolkit for Modeling and Simulation of Resource Management
Techniques in Internet of Things, Edge and Fog Computing Environments. CoRR

abs/1606.02007 (2016). arXiv:1606.02007 http://arxiv.org/abs/1606.02007
[7] George F. Riley and Thomas R. Henderson. 2010. The ns-3 Network Simulator.

Springer Berlin Heidelberg, Berlin, Heidelberg, 15–34. https://doi.org/10.1007/
978-3-642-12331-3_2

[8] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. 2018. EdgeCloudSim: An
environment for performance evaluation of edge computing systems. Trans-
actions on Emerging Telecommunications Technologies 29, 11 (2018). https:
//doi.org/10.1002/ett.3493

©João Oliveira, Filipe Sousa, and Luís Almeida, 2023. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive version was published in Q2SWinet ’23: Proceedings of the 19th ACM International
Symposium on QoS and Security for Wireless and Mobile Networks, https://doi.org/10.1145/3616391.3622774.

https://hal.inria.fr/hal-01213938
https://doi.org/10.1016/j.proeng.2012.06.412
https://doi.org/10.1016/j.proeng.2012.06.412
https://arxiv.org/abs/1606.02007
http://arxiv.org/abs/1606.02007
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1002/ett.3493
https://doi.org/10.1002/ett.3493

	Abstract
	1 Introduction
	2 IoTNetEMU Description
	3 Testing an IoT application
	Acknowledgments
	References

