MagRef4PIL - Magnetic Reference for Accurate Indoor Tracking


Indoor navigation is an important enabling technology for applications such as navigation aid, location-based information and advertisement, as well as to provide enhanced emergency response.

Several approaches have been proposed in recent years but none of them was able to achieve meter-level accuracy. More recently, a new approach has emerged as a solution for the accuracy issue. This approach relies on inertial sensors to track a user by continuously estimating displacement from a known position. Most recent smartphones are equipped with several sensors (e.g.: accelerometer, gyroscope, magnetometer) that provide the necessary hardware for this indoor navigation systems based on inertial sensors.

As previously stated, these indoor navigation systems, based on inertial sensor, define the actual position estimating displacement from a previously known position. On the other hand, these systems rely on low-cost sensors that can be extremely noisy. Noisy sensors will introduce position errors due noise itself but also drift (from gyroscope) and magnetic interference (from magnetometer). Eventually, these cumulative errors will lead to an erroneous estimation current position.

In order to correct positional errors, several solutions for aided indoor navigation have been proposed, e.g.: GPS (Global Positioning System) signals (when available), Wi-Fi fingerprinting, light patterns, structural magnetic fingerprinting, RFID (Radio Frequency Identification) check-points.

This MSc topic goal was to develop magnetic position references for an accurate indoor tracking system.

The main ideas was to study and develop a set of ultra-low frequency antennas that can interact with compass enabled phones in order to give them accurate references ,with less than one meter precision.


Author: Márcio Oliveira

Type: MSc thesis

Partner: Faculdade de Engenharia da Universidade do Porto

Year: 2014



Project Flyer